Thermo of Minerals Table

Table 1 summarizes much of the available data for relevant phases with filled circles showing well-known values, half filled for those needing more work but partially known and empty circles for those with no information. Columns E, F, and H are for high-pressure properties. This is provided for reference.  The most recent papers quoted in this table are 2003.  Much more work has been done in the last ten years on Thermal Equations of State, so the state of the high temperature high pressure densities are better known.  High temperature Raman is still in its infancy, but with the development of commercial diamond cells that can operate in the temperature ranges between ambient and 1000 C, there will be an explosion of data in this area as well. E.g., 29,30 The key is at the base of the table.


Table 1. Recent State of Thermophysical Data for Important Phases

Back to Home Page

a. quoted in 32;  b. 43;  c. 44;  d.45;  e. 46;  f. 47;  g. 48; h. 49  i. 50;  j. 51;  k. 52;  l. 53; m. 54; n. 55;  o. 56;  p. 57;  q. 4;  r. 58;  s. 59;  t. 60;  u. 61;  v.62;  w. 63;  x. 64;  y. 65;  z. 66; aa. 67;  bb. 68;  cc. 69;  dd. 70;  ee. 71,72; ff. 73-75;

aba.27,76-78; abb.16; abc. 79  abd. 80,  abe. 27,76,81, abg. 21; abh. 82; abi.83,84, abj. 20,85,86; abk. 87; abl. 88-92; abm. 17,23,25; abn. 93, abo.; abp.94,95; abq. 96,97; abr. 98;  abs. 99;  abt. 100; abu. 28,101; abv. 28,102; abw.103; abx. 104-106; aby. 107,108; abz. 109;  aca. 27,110  ;  acb. 87,111; acc.25,112; acd. 113,114; acf. 115; acg. 116 ; ach. 117 ;  aci. 118; acj. 119; ack.120; acl. 121,122; acm. 123,124; acn  125; aco. 126; acq. 58; acr. 127; acs.128; act. 129,130; acu. 131; acv. 132; acw. 118,133-136; acx. 137;

ada. 138; adb. 117,139,140; adc. 138,141;    ade. 142,143; adf. 133; adg. 144; adh. 145; adi. 146;adj. 147,148; adk. 149; adl. 129,150;  adm. 20,151; adn. 151; ado. 152; adp. 153; adq. See 130; adr. 154; ads. 145,155-157; adt. 20,158,159; adu. 160-162; adv. 26; adw. 163; ady. 164,165; aea. 166; aeb. 10;  aec. 133; aed. 167; aee. 168; aef. 169-171; aeg. 172,173;  aei. 174-176; aej. 177;  aek.178;  ael. 65; aem. 173; aen. 179; aeo. 178;  aep. 180;  aer. E.g. 181; aes.182; aet. 181; aeu. 183; aev. 184; aew. 185,186; aex. 187; aey. 184,188; aez.104; afa. 189; afb. 14; afc. 190; afd. 121,122,191;  afe. 192-194; afe. 120,195; afg. 196;

baa. 18,197, bab.19; bac. 110; bad. 20;  bae. 198 baf. 199; bag. 200, bah. 21; bai. 201, baj. 202-205; bak. 206



1. Tomioka, N., Leinenweber, K. & Sharp, T. G. In Antarctic Meteorites Symposium (National Institute of Polar Research, Tokyo, Japan, 2001).

2. Ekbundit, S. Et al. New high-pressure phase and pressure-induced amorphization of Ca(OH)2:  Grain size effect. Journal of Solid State Chemistry 126, 300-307 (1996).

3. Leinenweber, K., Partin, D. E., Schuelke, U., O’Keeffe, M. & Von Dreele, R. B. The structure of high pressure Ca(OD)2 II from powder neutron diffraction: Relationship to the ZrO2 and EuI2 structures. Journal of Solid State Chemistry 132, 267-273 (1997).

4. Schoenitz, M., Navrotsky, A. & Leinenweber, K. The enthalpy of transformation of Ca(OH)2-I (portlandite) to Ca(OH)2-II (EuI2 structure) by low-temperature DSC. Physics and Chemistry of Minerals 27, 604-609 (2000).

5. Hubert, H. Et al. High-pressure, high-temperature synthesis of superhard boron suboxide. Materials Research Society Symposium Proceedings 410, 191-196 (1995).

6. Leinenweber, K. Et al. Synthesis and structure refinement of the spinel, g-Ge3N4Chemistry: A European Journal 5, 3076-3078 (1999).

7. Morris, E., Groy, T. & Leinenweber, K. Crystal structure and bonding in the high-pressure form of fluorite (CaF2). Journal of Physics and Chemistry of Solids 62, 1117-1122 (2001).

8. Hernlund, J., Leinenweber, K. & Tyburczy, J. Numerical calculations of thermal profiles in solid-medium high-pressure experiments (in preparation). Contributions to Mineralogy and Petrology (2002).

9. Angel, R. J., Shaw, C. S. J. & Gibbs, G. V. Compression mechanisms of coesite. Physics and Chemistry of Minerals submitted (2002).

10. Angel, R. J., Mosenfelder, J. L. & Shaw, C. S. J. Anomalous compression and equation of state of coesite. Physics of the Earth and Planetary Interiors124, 71-79 (2001).

11. Ross, N. L. & Chaplin, T. D. Compressibility of CaZrO3 perovskite and its relationship to other Ca-oxide perovskites. Journal of Solid State Chemistryin press (2002).

12. Ross, N. L., Angel, R. J., Kung, J. & Chaplin, T. D. Elastic Properties of calcium oxide perovskites. Materials Research Society Symposia Proceedings718, ***-*** (2002).

13. Ross, N. L., Chaplin, T. D. & Welch, M. D. Compressibility of Stottite, FeGe(OH)6: An octahedral framework with  protonated oxygens. American Mineralogist 87, 1710-1714 (2002).

14. Ross, N. L., Angel, R. J. & Seifert, F. Compressibility of brownmillerite, Ca2Fe2O5: Effect of vacancies on the elastic properties of perovskites.Physics of the Earth and Planetary Interiors 129, 145-151 (2001).

15. Angel, R. J. (2002)

16. Chopelas, A. Thermal properties of forsterite at mantle pressures derived from vibrational spectroscopy. Physics and Chemistry of Minerals17, 149-157 (1990).

17. Chopelas, A. Thermal expansion, heat capacity, and entropy of MgO at mantle pressures. Physics and Chemistry of Minerals 17, 142-148 (1990).

18. Chopelas, A. Thermal properties of b-Mg2SiO4 at mantle pressures derived from vibrational spectroscopy: Implications for the mantle at 400 km depth. Journal of Geophysical Research B96, 11817-11829 (1991).

19. Chopelas, A., Boehler, R. & Ko, J. Thermodynamics and behavior of g-Mg2SiO4 at high pressure: Implications for Mg2SiO4 phase equilibrium.Physics and Chemistry of Minerals 21, 351-359 (1994).

20. Chopelas, A. Thermal expansivity of lower mantle phases MgO and MgSiO3 perovskite at high pressure derived from vibrational spectroscopy.Physics of the Earth and Planetary Interiors 98, 3-15 (1996).

21. Chopelas, A. Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high pressure spectroscopic data. American Mineralogist 84, 233-245 (1999).

22. Chopelas, A. & Nicol, M. Pressure dependence to 100 kilobars of the phonons of MgO at 90 and 295K. Journal of Geophysical Research 87, 8591-7 (1982).

23. Chopelas, A. Sound velocities of MgO to very high compression. Earth and Planetary Science Letters 114, 195-192 (1992).

24. Chopelas, A., Reichmann, H. J. & Zhang, L. In Mineral Spectroscopy: A Tribute to Roger G. Burns (eds. Dyar, M. D., McCammon, C. & Schaeffer, M. W.) 229-242 (The Geochemical Society, Houston, 1996).

25. Chopelas, A. The fluorescence sideband method for obtaining acoustic velocities at high compressions: Application to MgO and MgAl2O4Physics and Chemistry of Minerals 23, 25-37 (1996).

26. Chopelas, A. Thermal expansivity of mantle relevant magnesium silicates from vibrational spectroscopy at high pressures. American Mineralogist 85, 270-278 (2000).

27. Chopelas, A. Single-crystal Raman spectra of forsterite, fayalite, and montecellite. American Mineralogist 76, 1101-1109 (1991).

28. Hofmeister, A. M. & Chopelas, A. Vibrational spectroscopy of end-member silicate garnets. Physics and Chemistry of Minerals 17, 503-526 (1991).

29. Holland, T. J. B. & Powell, R. An internally-consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology16, 309-343 (1998).

30. Ghiorso, M. S. & Sack, R. O. Chemical Mass Transfer in Magmatic Processes IV: A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology 119, 197-212 (1995).

31. Jacobsen, S. D. Et al. Structure and elasticity of single-crystal (Mg,Fe)O and a new method of generating GHz-frequency shear waves for ultrasonics. Journal of Geophysical Research 107B (2001).

32. Robie, R. A. & Hemingway, B. S. In United States Geological Survey Bulletin 2131 (1995).

33. Ahrens, T. J. (ed.) A Handbook of Physical Constants: Mineral Physics and Crystallography (American Geophysical Union, Washington, D.C., 1995).

34. Berman, R. G. & Brown, T. H. Heat capacity in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2:  representation, estimation, and high temperature extrapolation. Contributions to Mineralogy and Petrology 89, 168-183 (1985).

35. Berman, R. G. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology 29, 445-522 (1988).

36. Berman, R. G., Engi, M., Greenwood, H. J. & Brown, T. H. Derivation of internally-consistent thermodynamic data by the technique of mathematical programming:  a review with application to the system MgO-SiO2-H2O. Journal of Petrology 27, 1331-1364 (1986).

37. Fei, Y., Saxena, S. K. & Navrotsky, A. Internally consistent thermodynamic data and equilibrium phase relations for compounds in the system MgO-SiO2 at high pressure and high temperature. Journal of Geophysical Research B95, 6915-6928 (1990).

38. Saxena, S. K. Earth mineralogical model:  Gibbs free energy minimization computation in the system MgO-FeO-SiO2. Geochimica Cosmochimica Acta 60, 2379-2395 (1996).

39. Kuskov, O. L., Galimzyanov, R. F., Khitarov, N. I. & Urusov, V. S. Phase relationships in the MgO-SiO2 system at the P-T conditions of the mantle transition zone.  Translated from. Geokhimiya 8, 1075-1091 (1983).

40. Kuskov, O. L., Fabrichnaya, O. B., Galimzyanov, R. F. & Truskinovsky, L. M. Computer simulation of the phase diagram for the MgO-SiO2 system at P-T parameters of the mantle transition zone. Physics and Chemistry of Minerals 16, 442-454 (1988).

41. Fabrichnaya, O. B. Thermodynamic data for phases in the FeO-MgO-SiO2system and phase relations in the mantle transition zone. Physics and Chemistry of Minerals 22, 323-332 (1995).

42. Grevel, K. D., Navrotsky, A., Kaul, W. A., Faßhauer, D. W. & Majzlan, J. Thermodynamic data of the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-surasaaite). Physics and Chemistry of Minerals in press (2001).

43. Akaogi, M., Ross, N. L., McMillan, P. & Navrotsky, A.  The Mg2SiO4  polymorphs (olivine, modified spinel, and spinel)- Thermodynamic properties for oxide solution calorimetry, phase relations and models of lattice vibrations. The American Mineralogist 29, 499-512 (1984).

44. Akaogi, M., Ito, E. & Navrotsky, A. Olivine- modified spinel- spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. Journal of Geophysical Research B94, 15671-15685 (1989).

45. Navrotsky, A., Pintchovski, F. S. & Akimoto, S. Calorimetric study of the stability of high pressure phases in the systems CoO-SiO2 and ‘FeO’-SiO2 and calculation of phase diagrams in MO-SiO2 systems. Physics of the Earth and Planetary Interiors 19, 275-292 (1979).

46. Navrotsky, A. & Akaogi, M. The a-b-g phase relations in Fe2SiO4-Mg2SiO4 and Co2SiO4-Mg2SiO4:  calculation from thermochemical data and geophysical applications. Journal of Geophysical Research B89, 10135-10140 (1984).

47. Ashida, T., Kume, E., Ito, E. & Navrotsky, A. MgSiO3 ilmenite: Heat capacity, thermal expansivity, and enthalpy of transformation. Physics and Chemistry of Minerals 16, 239-245 (1988).

48. Ito, E., Akaogi, M., Topor, L. & Navrotsky, A. Negative P-T slopes for reactions forming MgSiO3 perovskite confirmed by calorimetry. Science 249, 1275-1278 (1990).

49. Akaogi, M. & Ito, E. Heat capacity of MgSiO3 perovskite. Geophysical Research Letters 20, 105-108 (1993).

50. Akaogi, M. & Ito, E. Refinement of enthalpy measurement of MgSiO3perovskite and negative pressure-temperature slopes for perovskite-forming reactions. Geophysical Research Letters 20, 1839-1842 (1993).

51. Yusa, H., Akaogi, M. & Ito, E. Calorimetric study of MgSiO3 garnet and pyroxene: Heat capacities, transition enthalpies, and equilibrium phase relations in MgSiO3 at high pressures and temperatures. Journal of Geophysical Research B98, 6453-6460 (1993).

52. Akaogi, M., Yusa, H., Shiraishi, K. & Suzuki, T. Thermodynamic properties of a-quartz, coesite, and stishovite and equilibrium phase relations at high pressures and high temperatures. Journal of Geophysical Research B100, 22337-22347 (1995).

53. Liu, M., Yund, R. A., Tullis, J., Topor, L. & Navrotsky, A. Energy associated with dislocations: A calorimetric study using synthetic quartz.Physics and Chemistry of Minerals 22, 67-73 (1995).

54. Atake, T., Inoue, N., Kawaji, H., Matsuzaka, K. & Akaogi, M. Low temperature heat capacity of the high-pressure-phase of SiO2, coesite, and calculation of the a-quartz-to-coesite equilibrium boundary. Journal of Chemical Thermodynamics 32, 217-227 (2000).

55. Koito, S., Akaogi, M., Kubota, O. & Suzuki, T. Calorimetric measurements of perovskites in the system CaTiO3-CaSiO3 and experimental and calculated phase equilibria for high-pressure dissociation of diopside. Physics of the Earth and Planetary Interiors 120, 1-10 (2000).

56. Kojitani, H., Navrotsky, A. & Akaogi, M. Calorimetric study of perovskite solid solutions in the CaSiO3-CaGeO3 system. Physics and Chemistry of Minerals in press (2001).

57. Schoenitz, M., Navrotsky, A. & Ross, N. L. Enthalpy of formation of CaSi2O5, a quenched high-pressure phase with pentacoordinate silicon.Physics and Chemistry of Minerals 28, 57-60 (2001).

58. Schoenitz, M. & Navrotsky, A. Enthalpy of formation of katoite Ca3Al2[(OH)4]3:  energetics of the hydrogarnet substitution (Prewitt Volume). American Mineralogist 84, 389-391 (1999).

59. Bose, K. & Navrotsky, A. Thermochemistry and phase equilibria of hydrous phases in the system MgO-SiO2-H2O:  implications for volatile transport to the mantle. Journal of Geophysical Research B103, 9713-9719 (1998).

60. Nafziger, R. H. & Muan, A. Equilibrium phase compositions and thermodynamic properties of solid solutions in the system MgO-“FeO”-SiO2.American Mineralogist 52, 1364-1385 (1967).

61. Haavik, C., Stølen, S., Hanfland, M. & Catlow, C. R. A. Effect of defect clustering on the high-pressure behaviour of wüstite. High-pressure x-ray diffraction and lattice energy simulations. Physical Chemistry Chemical Physics 2, 5333-5340 (2000).

62. Stølen, S. & Grønvold, F. Calculation of the phase boundaries of wüstite at high pressure. Journal of Geophysical Research B101, 11531-11540 (1996).

63. Grønvold, F., Stølen, S., Tolmach, P. & Westrum Jr., E. F. Heat capacities of the wüstites Fe0.9379O and Fe0.9254O at temperatures T from 5 K to 350 K.  Thermodynamics of the reaction:  xFe(s)+(1/4)Fe3O4(s)=Fe0.7500+xO(s)=Fe1-yO(s) at ~ 850 K, and properties of Fe1-yO(s) to T=1000 K.  Thermodynamics of formation of wüstite. Journal of Chemical Thermodynamics 25, 1089-1117 (1993).

64. Stølen, S., Glöckner, R. & Grønvold, F. Nearly stoichiometric iron monoxide formed as a metastable intermediate in a two-stage disproportionation of quenched wüstite.  Thermodynamic and kinetic aspects.Thermochimica Acta 256, 91-106 (1995).

65. Haavik, C., Stølen, S., Fjellvåg, H., Hanfland, M. & Häusermann, D. Equation of state of magnetite and its high-pressure modification:  thermodynamics of the Fe-O system at high pressure. American Mineralogist85, 514-523 (2000).

66. Newton, R. C., Charlu, T. V. & Kleppa, O. J. Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochimica Cosmochimica Acta 41, 369-377 (1977).

67. Charlu, T. V., Newton, R. C. & Kleppa, O. J. Enthalpy of formation of some lime silicates by high-temperature solution calorimetry, with discussion of high pressure phase equilibria. Geochimica Cosmochimica Acta42, 367-375 (1978).

68. Zhu, H., Newton, R. C. & Kleppa, O. J. Enthalpy of formation of wollastonite (CaSiO3) and anorthite (CaAl2Si2O8) by experimental phase equilibrium measurements and high-temperature solution calorimetry.American Mineralogist 79, 134-144 (1994).

69. Charlu, T. V., Newton, R. C. & Kleppa, O. J. Enthalpies of formation at 970 K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry. Geochimica Cosmochimica Acta 39, 1487-1497 (1975).

70. Chatillon-Colinet, C., Kleppa, O. J., Newton, R. C. & Perkins III, D. Enthalpy of formation of Fe3Al2Si3O12 (almandine) by high temperature alkali borate solution calorimetry. Geochimica Cosmochimica Acta 47, 439-444 (1983).

71. Akaogi, M., Ohmura, N. & Suzuki, T. High pressure dissociation of Fe3Al2Si3O12 garnet:  phase boundary determined by phase equilibrium experiments and calorimetry. Physics of the Earth and Planetary Interiors106, 103-113 (1998).

72. Akaogi, M. & Ito, E. Calorimetric study on majorite-perovskite transition in the system Mg4Si4O12-Mg3Al2Si3O12:  transition boundaries with positive pressure-temperature slopes. Physics of the Earth and Planetary Interiors114, 129-140 (1999).

73. Faust, J. & Williams, Q. Infrared spectra of phase B at high pressures: Hydroxyl bonding under compression. Geophysical Research Letters 23, 427-430 (1996).

74. Liu, L. G., Lin, C. C., Mernagh, T. P. & Irifune, T. Raman spectra of phase B at various pressures and temperatures. Journal of Physics and Chemistry of Solids 59, 871-877 (1998).

75. Hofmeister, A. M., Cynn, H., Burnlety, P. C. & Meade, C. Vibrational spectra of dense, hydrous magnesium silicates at high pressure: importance of hydrogen bond angle. American Mineralogist 84, 454-464 (1999).

76. Hofmeister, A. M. Single-crystal absorption and reflection infrared spectroscopy of forsterite and fayalite. Physics and Chemistry of Minerals14, 499-513 (1987).

77. Rao, K. R. Et al. Lattice dynamics and inelastic neutron scattering from forsterite, Mg2SiO4: phonon dispersion relation, density of states, and specific heat. Physics and Chemistry of Minerals 16, 83-97 (1988).

78. Gillet, P., Richet, P., Guyot, F. & Fiquet, G. High-temperature thermodynamic properties of forsterite. Journal of Geophysical Research B 96, 11805-11816 (1991).

79. Reynard, B. Et al. High-temperature Raman spectroscopic and X-ray diffraction study of b-Mg2SiO4; insights into its high-temperature thermodynamic properties and the b- to a-phase-transition mechanism and kinetics. American Mineralogist 81, 585-594 (1996).

80. McMillan, P. & Akaogi, M. Raman spectra of b-Mg2SiO4 (modified spinel) and g-Mg2SiO4 (spinel). The American Mineralogist 72, 361-364 (1987).

81. Hofmeister, A. M. Infrared reflectance spectra of fayalite, and absorption data from assorted olivines, including pressure and isotope effects. Physics and Chemistry of Minerals 24, 535-546 (1997).

82. Chopelas, A. & Boehler, R. In High Pressure Research: Application to Earth and Planetary Science (eds. Syono, Y. & Manghnani, M.) 101-108 (Terrapub, Tokyo, 1992).

83. Reynard, B. & Rubie, D. C. High-pressure high-temperature Raman spectroscopic study of MgSiO3 ilmenite. American Mineralogist 81, 1092-1096 (1996).

84. Hofmeister, A. M., Madon, M. & Price, G. D. Infrared spectroscopy of the polymorphic series (enstatite, ilmenite, and perovskite) of MgSiO3, MgGeO3, and MnGeO3; discussion and reply [modified]. Journal of Geophysical Research B96, 21959-21963 (1991).

85. Durben, D. J. & Wolf, G. H. High-temperature behavior of metastable MgSiO3 perovskite: A Raman spectroscopic study. American Mineralogist 77, 890-893 (1992).

86. Lu, R., Hofmeister, A. M. & Wang, Y. Thermodynamic properties of ferromagnesium silicate perovskites from vibrational spectroscopy. Journal of Geophysical Research B99, 11795-804 (1994).

87. McMillan, P. Et al. Cation disorder in garnets along the Mg3Al2Si3O12– Mg4Si4O12 join: an infrared, Raman and NMR study. Physics and Chemistry of Minerals 16, 428-435 (1989).

88. Scott, J. F. & Porto, S. P. S. Longitudinal and transverse optical lattice vibrations in quartz. Physical Review 161, 903-910 (1967).

89. Spitzer, W. G. & Kleinman, D. A. Infrared lattice bands of quartz.Physical Review 121, 1324-1335 (1961).

90. Hemley, R. J. In High-Pressure Research in Mineral Physics (eds. Manghnani, M. H. & Syono, Y.) 347-359 (Terra Scientific Publishing Company, Tokyo, 1987).

91. Hofmeister, A. M. In Mineral Spectroscopy: A Tribute to Roger G. Burns(eds. Dyar, M. D., McCammon, C. & Schaefer, M. W.) 215-227 (The Geochemical Society, Houston, 1996).

92. Gillet, P., Le Cleac’h, A. & Madon, M. High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures. Journal of Geophysical Research B95, 21635-55 (1990).

93. Sangster, M. J. L., Peckham, G. & Saunderson, D. H. Lattice dynamics of magnesium oxide. Journal of Physics C 3, 1026-1036 (1970).

94. Porto, S. P. S. & Krishnan, R. S. Raman effect of corundum. Journal of Chemical Physics 47, 1009-1012 (1967).

95. Gervais, F. & Piriou, B. Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity. Journal of PHysics C: Solid State Physics 7, 2374-2387 (1974).

96. Bialas, H. & Stolz, H. J. Lattice dynamics of sapphire (corundum): Part I, Phonon dispersion by inelastic neutron scattering. Zeitschrift Physik B 21, 319-324 (1975).

97. Kappus, W. Lattice dynamics of sapphire (corundum): Part II, Calculations of the phonon dispersion. Zeitschrift Physik B 21, 325-331 (1975).

98. Thompson, P. & Grimes, N. W. Observation of low energy phonons in spinel. Solid State Communications 25, 609-611 (1978).

99. Ross, N. L., Akaogi, M., Navrotsky, A., Susaki, J. & McMillan, P. Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation. Journal of Geophysical Research B91, 4685-96 (1986).

100. Leinenweber, K. Et al. Structural Variation in Ca(TixSi1-x)O3 Perovskites (1>x>0.65) and the Ordered Phase Ca2TiSiO6Physics and Chemistry of Minerals 24, 528-534 (1997).

101. Mittal, R., Chaplot, S. L. & Choudhury, N. Lattice dynamics calculations of the phonon spectra and thermodynamic properties of the aluminosilicate garnets pyrope, grossular, and spessartine. Physical Review B 64, 94301-1-9 (2001).

102. Kolesov, B. A. & Geiger, C. A. Raman spectra of silicate garnets.Physics and Chemistry of Minerals 25, 142-151 (1998).

103. Suzuki, I. & Kumazawa, M. Anomalous thermal expansion in spinel MgAl2O4: A possibility for a second order phase transition? Physics and Chemistry of Minerals 5, 279-284 (1980).

104. Daniel, I., Gillet, P., McMillan, P. F., Wolf, G. & Verhelst, M. A. High-pressure behavior of anorthite: compression and amorphization. Journal of Geophysical Research B102, 10313-25 (1997).

105. Daniel, I., Gillet, P., Poe, B. T. & McMillan, P. F. In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids. Physics and Chemistry of Minerals 22, 74-86 (1995).

106. Williams, Q. In Properties of Earth and Planetary Materials at High Pressure and Temperature: Geophysical Monograph 101 (eds. Manghnani, M. H. & Yagi, T.) 531-543 (American Geophysical Union, Washington, D.C., 1998).

107. Lemaire, C., Guyot, F. & Reynard, B. Vibrational spectroscopy (IR and Raman) of OH groups in chrysotile, lizardite and antigorite. Journal of Conference Abstracts 4, 654 (1999).

108. Bannikov, O. L. & Kovaleva, L. T. Infrared spectroscopic study of minerals of the serpentine group. Soviet Geology and Geophysics 25, 97-102 (1984).

109. Liu, L. G., Lin, C. C., Mernagh, T. P. & Irifune, T. Raman spectra of phase A at various pressures and temperatures. Journal of Physics and Chemistry of Solids 58, 2023-2030 (1997).

110. Hofmeister, A. M., Xu, J., Mao, H.-K., Bell, P. M. & Hoering, T. C. Thermodynamics of Fe-Mg olivines at mantle pressures: Mid- and far- Infrared spectroscopy at high pressure. The American Mineralogist 74, 281-306 (1989).

111. Manghnani, M. H., Vijayakumar, V. & Bass, J. D. In Properties of Earth and Planetary Materials at High Pressure and Temperature, Geophysical Monograph 101 (eds. Manghnani, M. H. & Yagi, T.) 129-138 (American Geophysical Union, Washington, D.C, 1998).

112. Chopelas, A. & Hofmeister, A. M. Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar. Physics and Chemistry of Minerals 18, 279-293 (1991).

113. Kleppe, A. K. Et al. Raman spectroscopic study of hydrous wadsleyite (b-Mg2SiO4) to 50 GPa. Physics and Chemistry of Minerals 28, 232-241 (2001).

114. Cynn, H. & Hofmeister, A. M. High-pressure IR spectra of lattice modes and OH vibrations in Fe-bearing wadsleyite. Journal of Geophysical Research99, 17717-27 (1994).

115. Elcombe, M. H. Some aspects of the lattice dynamics of quartz.Proceedings of the Physical Society of London 91, 947-958 (1967).

116. Zerr, A., Reichmann, H. J., Euler, H. & Boehler, R. Hydrostatic compression of g-(Mg0.6,Fe0.4)2SiO4 to 50 GPa. Physics and Chemistry of Minerals 19, 507-509 (1993).

117. Wang, Y., Weidner, D. J., Liebermann, R. C. & Zhao, Y. P-V-T equation of state of (Mg,Fe)SiO3 perovskite: constraints on composition of the lower mantle. Physics of the Earth and Planetary Interiors 83, 13-40 (1994).

118. Wang, Y., Weidner, D. J., Zhang, J., Gwanmesia, G. D. & Liebermann, R. C. Thermal equation of state of garnets along the pyrope-majorite join.Physics of the Earth and Planetary Interiors 105, 59-71 (1998).

119. Kubo, A., Yagi, T., Ono, S. & Akaogi, M. Compressibility of Mg0.9Al0.2Si0.9O3 perovskite. Proceedings of the Japanese Academy 76, 103-107 (2000).

120. Fei, Y., Mao, H.-K., Shu, J. & Hu, J. P-V-T equation of state of magnesiowüstite (Mg0.6Fe0.4)O. Physics and Chemistry of Minerals 18, 416-422 (1992).

121. Fei, Y. & Mao, H.-K. Static compression of Mg(OH)2 to 78 GPa at high temperature and constraints on the equation of state of fluid H2O. Journal of Geophysical Research B98, 11875-11884 (1993).

122. Xia, X., Weidner, D. J. & Zhao, H. Equation of state of brucite: Single crystal Brillouin spectroscopy study and polycrystalline pressure-volume-temperature measurement. American Mineralogist 83, 68-74 (1998).

123. Lu, R., Goncharov, A. F., Hemley, R. J. & Mao, H.-K. In Clay Minerals Society Workshop Lectures in press (1998).

124. Duffy, T. S., Meade, C., Fei, Y., Mao, H.-K. & Hemley, R. J. High pressure phase transition of brucite, Mg(OH)2American Mineralogist 80, 222-230 (1995).

125. Nagai, T., Ito, T., Hattori, T. & Yamanaka, T. Compression mechanism and amorphization of portlandite, Ca(OH)2(2): structural refinement under pressure. Physics and Chemistry of Minerals 27, 462-466 (2000).

126. Pavese, A., Cattij, M. & Hull, S. P-V equation of state of portlandite, Ca(OH)2, from powder neutron diffraction data. Physics and Chemistry of Minerals 24, 85 (1997).

127. Olijnyk, H., Paris, E., Geiger, C. A. & Lager, G. A. Compressional study of katoite [Ca3Al2(O4H4)3] and grossular garnet. Journal of Geophysical Research B96, 14313-14318 (1991).

128. Zha, C.-S. Et al. Single-crystal elasticity of b-Mg2SiO4 to the pressure of the 410-km seismic discontinuity in the Earth’s mantle. Earth and Planetary Science Letters 147, E9-E15 (1997).

129. Zhang, L. Single crystal hydrostatic compression of (Mg, Mn, Fe, Co)2SiO4 olivines. Physics and Chemistry of Minerals 25, 308-312 (1998).

130. Isaak, D. G., Graham, E. K., Bass, J. D. & Wang, H. The elastic properties of single-crystal fayalite as determined by dynamical measurement techniques. Pure and Applied Geophysics 141, 393-414 (1993).

131. Plymate, T. G. & Stout, J. H. Pressure-volume-temperature behavior ofg-Fe2SiO4 (spinel) based on static compression measurements at 400 °C.Physics and Chemistry of Minerals 21, 413-420 (1994).

132. Pavese, A. Et al. Pressure-volume-temperature equation of state of andradite and grossular, by high-pressure and -temperature powder diffraction. Physics and Chemistry of Minerals 28, 242-248 (2001).

133. Fei, Y. In Mineral Spectroscopy: A Tribute to Roger Burns (eds. Dyar, M. D., McCammon, C. & Schaefer, M. W.) 243-254 (The Geochemical Society, Houston, 1996).

134. Morishima, H. Et al. The high pressure and temperature equation of state of a majorite solid solution in the system Mg4Si4O12 – Mg3Al2Si3O12.Physics and Chemistry of Minerals 27, 3-10 (1999).

135. Gwanmesia, G. D. Et al. Elasticity of the pyrope (Mg3Al2Si3O12)- majorite (MgSiO3) garnets solid solution. Physics and Chemistry of Minerals27, 445-452 (2000).

136. Sinogeikin, S. V., Bass, J. D., ONeill, B. & Gasparik, T. Elasticity of tetragonal end-member majorite and solid solutions in the system Mg4Si4O12-Mg3Al2Si3O12Physics and Chemistry of Minerals 24, 115-121 (1997).

137. Dubrovinsky, L. S., Saxena, S. K. & Lazor, P. High-pressure and high-temperature in situ X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell. Physics and Chemistry of Minerals 25, 434-441 (1998).

138. Meng, Y. Et al. In situ high P-T X ray diffraction studies on three polymorphs (a , b , g) of Mg2SiO4. Journal of Geophysical Research 98, 22199-207 (1993).

139. Funamori, N. & Yagi, T. High pressure and high temperature in situ x-ray observation of MgSiO3 perovskite under lower mantle conditions. Geophysical Research Letters 20, 387-390 (1993).

140. Utsumi, W. Et al. Thermal expansivity of MgSiO3 perovskite under high pressures up to 20 GPa. Geophysical Research Letters 22, 1005-1008 (1995).

141. Fei, Y. Et al. Simultaneous high-P, high-T X ray diffraction study of b-(Mg,Fe)2SiO4 to 26 GPa and 900 K. Journal of Geophysical Research B97, 4489-95 (1992).

142. Chen, G., Liebermann, R. C. & Weidner, D. J. Elasticity of single crystal MgO to 8 Gigapascals and 1600 Kelvin. Science 280, 1913-1916 (1998).

143. Zhang, J. Effect of pressure on the thermal expansion of MgO up to 8.2 GPa. Physics and Chemistry of Minerals 27, 145-148 (2000).

144. Zhao, Y. S., Schiferl, D. & Shankland, T. S. A high P-T single crystal x-ray diffractions study of thermoelasticity of MgSiO3 orthoenstatite. Physics and Chemistry of Minerals 22, 393-398 (1995).

145. Hugh-Jones, D. A., Woodland, A. B. & Angel, R. J. The structure of high-pressure C2/c ferrosilite and the crystal chemistry of high-pressure C2/c pyroxenes. American Mineralogist 79, 1032-1041 (1994).

146. Hugh-Jones, D. A. Thermal expansion of MgSiO3 and FeSiO3 ortho- and clinopyroxenes. American Mineralogist 82, 689-696 (1997).

147. Reynard, B., Fiquet, G., Itié, J.-P. & Rubie, D. C. High-pressure X-ray diffraction study and equation of state of MgSiO3 ilmenite. American Mineralogist 81, 45-50 (1996).

148. Weidner, D. J. & Ito, E. Elasticity of MgSiO3 in the ilmenite phase.Physics of the Earth and Planetary Interiors 40, 65-70 (1985).

149. Kajiyoshi, K. (Okayama University, Okayama, Japan, 1986).

150. Downs, R. T., Zha, C.-S., Duffy, T. S. & Finger, L. W. The equation of state of forsterite to 17.2 GPa and effects of pressure media. American Mineralogist 81, 51-55 (1996).

151. Suzuki, I., Ohtani, E. & Kumazawa, M. Thermal expansion of modified spinel, b-Mg2SiO4. Journal of the Physics of the Earth 28, 273-280 (1980).

152. Suzuki, I., Ohtani, E. & Kumazawa, M. Thermal expansion ofg-Mg2SiO4. Journal of the Physics of the Earth 27, 53-61 (1979).

153. Meng, Y., Fei, Y., Weidner, D. J., Gwanmesia, G. D. & Hu, J. Hydrostatic compression of g-Mg2SiO4 to mantle pressures and 700 K.Physics and Chemistry of Minerals 21, 407-412 (1994).

154. Hugh-Jones, D. A. & Angel, R. J. A compressional study of MgSiO3orthoenstatite up to 8.5 GPa. American Mineralogist 79, 405-410 (1994).

155. Angel, R. J., Chopelas, A. & Ross, N. L. Stability of high-density clinoenstatite at upper-mantle pressures. Nature 358, 322-4 (1992).

156. Angel, R. J. & Hugh-Jones, D. A. Equations of state and thermodynamic properties of enstatite pyroxenes. Journal of Geophysical Research 99, 19777-19783 (1994).

157. Hugh-Jones, D. A., Chopelas, A. & Angel, R. J. Tetrahedral compression in (Mg,Fe)SiO3 orthopyroxenes. Physics and Chemistry of Minerals 24, 301-310 (1997).

158. Ross, N. L. & Hazen, R. M. Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K. Physics and Chemistry of Minerals 16, 415-20 (1989).

159. Parise, J. B., Wang, Y., Yeganeh-Haeri, A., Cox, D. E. & Fei, Y. Crystal structure and thermal expansion of (Mg, Fe)SiO3 perovskite. Geophysical Research Letters 17, 2089-92 (1990).

160. Ross, N. L. & Hazen, R. M. High-pressure crystal chemistry of MgSiO3perovskite. Physics and Chemistry of Minerals 17, 228-237 (1990).

161. Yeganeh-Haeri, A., Weidner, D. J. & Ito, E. Elasticity of MgSiO3 in the perovskite structure. Science 243, 787-9 (1989).

162. Yeganeh-Haeri, A. Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite. Physics of the Earth and Planetary Interiors 87, 111-21 (1994).

163. Yagi, T., Uchiyama, Y., Akaogi, M. & Ito, E. Isothermal compression curve of MgSiO3 tetragonal garnet. Physics of the Earth and Planetary Interiors 74, 1-7 (1992).

164. Zha, C.-S., Duffy, T. S., Downs, R. T., Mao, H.-K. & Hemley, R. J. Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth and Planetary Science Letters 159, 25-33 (1998).

165. Zaug, J. M., Abramson, E. H., Brown, J. M. & Slutsky, L. J. Sound velocities in olivine at Earth mantle pressures. Science 260, 1487-1489 (1993).

166. Skinner, B. J. In [Monograph] Geological Survey Research 1962 D109-D112 (U.S. Geological Survey, Reston, VA, 1962).

167. Ito, E., Kawada, K. & Akimoto, S. Thermal expansion of stishovite.Physics of the Earth and Planetary Interiors 8, 277-281 (1974).

168. Li, B., Rigden, S. M. & Liebermann, R. C. Elasticity of stishovite at high pressure. Physics of the Earth and Planetary Interiors 96, 113-127 (1996).

169. Ross, N. L., Crichton, W. A., Frost, D. & Kung, J. Equations of state of  hydrous wadsleyites determined by high pressure single crystal x-ray diffraction. EOS, Transactions of the American Geophysical Union, F861 (1998).

170. Hitoshi, Y. & Inoue, T. Compressibility of hydrous wadsleyite (beta-phase) in Mg2SiO4 by high-pressure x-ray diffraction. Geophysical Research Letters 24, 1831-1834 (1997).

171. Yusa, H. & Inoue, T. Compressibility of hydrous wadsleyite (b-phase) in Mg2SiO4 by high pressure x-ray diffraction. Geophysical Research Letters24, 1831-1834 (1997).

172. Dubrovinsky, L. S. & Saxena, S. K. Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures. Physics and Chemistry of Minerals 24, 547-550 (1997).

173. Fiquet, G., Richet, P. & Montagnac, G. High-temperature thermal expansion of lime, periclase, corundum and spinel. Physics and Chemistry of Minerals 27, 103-111 (1999).

174. Speziale, S., Zha, C.-S., Duffy, T. S., Hemley, R. J. & Mao, H.-K. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state. Journal of Geophysical Research B106, 521-528 (2001).

175. Sinogeikin, S. V. & Bass, J. D. Single-crystal elasticity of MgO at high pressure. Physical Review B 59, R14141-R14144 (1999).

176. Sinogeikin, S. V. & Bass, J. D. Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Physics of the Earth and Planetary Interiors 120, 43-62 (2000).

177. Richet, P., Mao, H.-K. & Bell, P. M. Bulk moduli of magnesiowüstites from static compression measurements. Journal of Geophysical ResearchB94, 3037-3045 (1989).

178. Finger, L. W., Hazen, R. M. & Hofmeister, A. M. High-pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4): Comparisons with silicate spinels. Physics and Chemistry of Minerals 13, 215-220 (1986).

179. Goto, T., Yamamoto, S., Ohno, I. & Anderson, O. L. Elastic constants of corundum up to 1825 K. Journal of Geophysical Research 94, 7588-7602 (1989).

180. Swamy, V., Dubrovinsky, L. S. & Tutti, F. High-temperature Raman spectra and thermal expansion of wollastonite. Journal of the American Ceramic Society 80, 2237-2247 (1997).

181. Sinogeikin, S. V., Chen, G. & Liebermann, R. C. Elasticity of CaTiO3-CaSiO3 perovskites. Physics and Chemistry of Minerals 25, 515-521 (1998).

182. Suzuki, I. & Anderson, O. L. Elasticity and thermal expansion of a natural garnet up to 1000 K. Journal of Physics of the Earth 31, 125-138 (1983).

183. Skinner, B. J. In Handbook of Physical Constants (ed. Clark Jr., S. P.) 75-95 (Geological Society of America, Boulder, CO, 1966).

184. Zhang, L., Ahsbahs, H., Kutoglu, A. & Geiger, C. A. Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular, and andradite garnets at high pressure. Physics and Chemistry of Minerals 27, 52-58 (1999).

185. Crichton, W. A. & Ross, N. L. Single-crystal equation of state of Phase A. American Mineralogist in press (2001).

186. Ross, N. L. & Crichton, W. A. Equation of state of Phase A and elasticity systematics along the forsterite-brucite join. EOS, Transactions, American Geophysical Union 81, S50 (2000).

187. Isaak, D. G., Anderson, O. L. & Oda, H. High-temperature thermal expansion and elasticity of calcium-rich garnets. Physics and Chemistry of Minerals 19, 106-120 (1992).

188. Bass, J. D. Elasticity of grossular and spessartite garnets by Brillouin spectroscopy. Journal of Geophysical Research B94, 7621-7628 (1989).

189. Pawley, A. R., Redfern, S. A. T. & Wood, B. J. Thermal expansivities and compressibilities of hydrous phases in the system MgO-SiO2-H2O: talc, phase A and 10-Å phase. Contributions to Mineralogy and Petrology 122, 301-307 (1995).

190. Redfern, S. A. T. & Wood, B. J. Thermal expansion of brucite, Mg(OH)2.American Mineralogist 77, 1129-1132 (1992).

191. Duffy, T. S., Shu, J., Mao, H.-K. & Hemley, R. J. Single-crystal x-ray diffraction of brucite to 14 GPa. Physics and Chemistry of Minerals 22, 277-281 (1995).

192. Kudoh, Y. Et al. In High-Pressure Science and Technology-1993 (eds. Schmidt, S. C., Shaner, J. W., Samara, G. A. & Ross, M.) 469-472 (American Institute of Physics, New York, 1994).

193. Crichton, W. A., Ross, N. L. & Gasparik, T. Equations of state of Anhydrous B and Superhydrous-B. Physics and Chemistry of Minerals 26, 570-575 (1999).

194. Pacalo, R. E. & Weidner, D. J. Elasticity of superhydrous B. Physics and Chemistry of Minerals 23, 520-525 (1996).

195. Jacobsen, S. D. Et al. Hydrostatic compression of single-crystal magnesiowüstite (abstract). EOS, Transactions of the American Geophysical Union 80, 937 (1999).

196. Suzuki, I. Thermal expansion of periclase and olivine and their anharmonic properties. Journal of Physics of the Earth 23, 145-159 (1975).

197. Williams, Q., Jeanloz, R. & Akaogi, M. Infrared vibrational spectra of b-phase Mg2SiO4 and Co2SiO4 to pressures of 27 GPa. Physics and Chemistry of Minerals 13, 141-5 (1986).

198. Gillet, P., Fiquet, G., Malezieux, J. M. & Geiger, C. A. High-pressure and high-temperature Raman spectroscopy of end-member garnets; pyrope, grossular and andradite. European Journal of Mineralogy 4, 651-664 (1992).

199. Serghiou, G., Zerr, A. & Chopelas, A. Phase transitions and disordering of CaSiO3 under pressure. Reviews of High Pressure Science and Technology7, 359-361 (1997).

200. Zhang, L. & Chopelas, A. Sound velocity of Al2O3  to 616 kbar. Physics of the Earth and Planetary Interiors 87, 77-83 (1994).

201. Kleppe, A. K., Jephcoat, A. P. & Smyth, J. R. Raman spectroscopic study of hydrous g-Mg2SiO4 to 56.5 GPa. Physics and Chemistry of Minerals29, 473-476 (2002).

202. Winkler, B. Et al. Calculation of the elastic constants of the Al2SiO5 polymorphs andalusite, sillimanite and kyanite. Zeitschrift Fur Kristallographie 216, 67-70 (2001).

203. Oganov, A. R. & Brodholt, J. P. High-pressure phases in the Al2SiO5 system and the problem of aluminous phase in the Earth’s lower mantle: ab initio calculations. Physics and Chemistry of Minerals 27, 430-439 (2000).

204. Comodi, P., Zanazzi, P. F., Poli, S. & Schmidt, M. W. High-pressure behavior of kyanite: Compressibility and structural deformations. American Mineralogist 82, 452-459 (1997).

205. Yang, H. X., Downs, R. T., Finger, L. W., Hazen, R. M. & Prewitt, C. T. Compressibility and crystal structure of kyanite, Al2SiO5, at high pressure.American Mineralogist 82, 467-474 (1997).

206. Mernagh, T. P. & Liu, L. G. Raman spectra from the Al2SiO5 polymorphs at high pressure and room temperature. Physics and Chemistry of Minerals18, 126-130 (1991).

207. Ito, E. & Navrotsky, A. MgSiO3 Ilmenite – Calorimetry, Phase-Equilibria, and Decomposition at Atmospheric-Pressure. American Mineralogist 70, 1020-1026 (1985).

208. Burnley, P. C. & Navrotsky, A. Synthesis of high-pressure hydrous magnesium silicates: Observations and analysis. American Mineralogist 81, 317-326 (1996).

209. Gwanmesia, G. D., Li, B. S. & Liebermann, R. C. Hot-Pressing of Polycrystals of High-Pressure Phases of Mantle Minerals in Multi-Anvil Apparatus. Pure and Applied Geophysics 141, 467-484 (1993).

210. Wiryana, S., Slutsky, L. J. & Brown, J. M. The equation of state of water to 200 degrees C and 3.5 GPa: Model potentials and the experimental pressure scale. Earth and Planetary Science Letters 163, 125-130 (1998).

211. Walsh, J. M. & Rice, M. H. Dynamic compression of liquids from measurements of strong shock waves. Journal of Chemical Physics 26, 815 (1957).

212. Mitchell, A. C. & Nellis, W. J. Equation of state and electrical conductivity of water and ammonia shocked to 100 GPa (100 Mbar) pressure range. Journal of Chemical Physics 76, 6273 (1982).

213. Lyzenga, G. A., Ahrens, T. J., Nellis, W. J. & Mitchell, A. C. The temperature of shock-compressed water. Journal of Chemical Physics 76, 6282 (1982).

214. Wagner, W. & Pruss, A. The IAPWS formulation of 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physics and Chemistry Reference Data 31, 387 (2002).

215. Haar, L., Gallagher, J. S. & Kell, G. S. NBS/NRC Steam Tables: Thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units (Hemisphere Publishing, Washington, D.C., 1984).

216. Pitzer, K. S. & Sterner, S. M. Equations of state for H2O and CO2 valid continously from zero to extreme pressures. Journal of Chemical Physics101, 3111-3116 (1994).

217. Saul, A. & Wagner, W. A fundamental equation for water covering the range from the melting line to 1273 K at pressures up to 25,000 MPa. Journal of Physical and Chemical Reference Data 18, 1537-1564 (1989).

218. Brodholt, J. P. & Wood, B. J. Simulations of the structure and thermodynamic properties of water at high pressures and temperatures. Journal of Geophysical Research 98, 519-536 (1993).

219. Belonoshko, A. & Saxena, S. K. A molecular dynamics study of the pressure-volume-temperature properties of super-critical fluids: 1. H2O. Geochimica Cosmochimica Acta 55, 381-387 (1991).

220. Abramson, E. H., Brown, J. M. & Slutsky, L. J. Applications of impulsive stimulated scattering. Annual Review of Physical Chemistry 50, 279-313 (1999).

221. Abramson, E. H., Brown, J. M., Slutsky, L. J. & Wiryana, S. Measuring speed of sound and thermal diffusivity in the diamond-anvil cell. International Journal of Thermophysics 22, 405-414 (2001).

222. Nellis, W. J. & etal. Equation of state of shock-compressed liquids: Carbon dioxide and air. Journal of Chemical Physics 96, 5268 (1991).

223. Schott, G. L. High Pressure Research 6, 187 (1991).

224. Haselton, J., H.T., Sharp, W. E. & Newton, R. C. CO2 fugacity at high temperatures and pressures from experimental decarbonation reactions. Geophysical Research Letters 5, 753-756 (1978).

225. Iota, V. & Yoo, C.-S. Phase diagram of carbon dioxide: Evidence for a new associated phase. Physical Review Letters 86, 5922 (2001).

226. Bridgman, P. W. Change of phase under pressure, I. The phase diagram of eleven substances with especial reference to the melting curve. Physical Review 3, 153 (1914).

227. Grace, J. D. & Kennedy, G. C. The melting curve of five gases to 30 kb. Journal of Physics and Chemistry of Solids 28, 977 (1967).

228. Fayer, M. D. Dynamics of molecules in condensed phases: picosecond holographic grating experiements. Annual Review of Physical Chemistry 33, 63-67 (1982).

229. Fayer, M. D. Picosecond holographic grating generation of ultrasonic waves. Journal of Quantum Electronics 22, 1437-1452 (1986).

230. Yan, Y. X., Cheng, L. T. & Nelson, K. A. In Advances in Nonlinear Spectroscopy (eds. Clark, R. J. H. & Hester, R. E.) 299-355 (John Wiley, New York, 1988).

231. Guidotti, C., Sassi, F., Comodi, P., Zanazzi, P. & Blencoe, J. The contrasting responses of  muscovite and paragonite to increasing pressure: petrologic implications. Canadian Mineralogist 38 (2000).

232. Angel, R. J. In Feldspars and their Reactions (ed. Parsons, I.) 271-312 (Kluwer Academic Publishers, Dordrecht, 1994).

233. Angel, R. J., Downs, R. T. & Finger, L. W. In High-pressure and high-temperature crystal chemistry (eds. Hazen, R. M. & Downs, R. T.) 559-596 (MSA, 2000).

234. Angel, R. J., Allan, D. R., Miletich, R. & Finger, L. W. The use of quartz as an internal pressure standard in high-pressure crystallography. Journal of Applied Crystallography 30, 461-466 (1997).

235. Angel, R. J. Equations of state. In R.M. Hazen, R.T. Downs (eds.). High-pressure, high-temperature crystal chemistry. Reviews in Mineralogy and Geochemistry 41, 35-59 (2000).

236. Kung, J., Angel, R. J. & Ross, N. L. Elasticity of CaSnO3 perovskite.Physics and Chemistry of Minerals 28, 35-43 (2001).

237. Angel, R. J. & Jackson, J. M. Elasticity and equation of state of orthoenstatite, MgSiO3. American Mineralogist 87, 558-561 (2002).

238. Jackson, J. M., Sinogeikin, S. V. & Bass, J. D. Elasticity of MgSiO3orthoenstatite. American Mineralogist 84, 677-680 (1999).

239. Sinogeikin, S. V., Jackson, J. M., O’Neill, B., Palko, J. W. & Bass, J. D. Compact high-temperature cell for Brillouin scattering measurements. Review of Scientific Instruments 71, 201-206 (2000).

240. Libowitzky, E. & Armbruster, T. Low-temperature phase transitions and the role of hydrogen bonds in lawsonite. American Mineralogist 80, 1277-1285 (1995).

241. Daniel, I., Fiquet, G., Gillet, P., Schmidt, M. W. & Hanfland, M. P-V-T equation of state of lawsonite. Physics and Chemistry of Minerals 26, 406-414 (1999).

242. Grevel, K. D., Nowlan, E. U., Fasshauer, D. W. & Burchard, M. In situ X-ray diffraction investigation of lawsonite and zoisite at high pressures and temperatures. American Mineralogist 85, 206-216 (2000).

243. Chinnery, N., Pawley, A. R. & Clark, S. M. The equation of state of lawsonite to 7 GPa and 873 K, and calculation of its high pressure stability.American Mineralogist 85, 1001-1008 (2000).

244. Boffa-Ballaran, T. & Angel, R. J. Equation of state and high-pressure phase transitions in lawsonite. European Journal of Mineralogy in press(2002).

245. Sinogeikin, S. V., Schilling, F. R. & Bass, J. D. Single-crystal elasticity of lawsonite. American Mineralogist 85, 1834-1837 (2000).

246. Angel, R. J., Frost, D. J., Ross, N. L. & Hemley, R. J. Stabilities and equations of state of dense hydrous magnesium silicates. Physics of the Earth and Planetary Interiors 127, 181-196 (2001).

247. Boehler, R. & Chopelas, A. In High – Pressure Research: Application to Earth and Planetary Sciences (eds. Syono, Y. & Manghnani, M. H.) 55-60 (Terra Scientific Publishing Company, Tokyo, 1992).

248. Chaplot, S. L. Et al. Inelastic neutron scattering and lattice dynamics of minerals. European Journal of Mineralogy 14, 291-329 (2002).

249. Boffa Ballaran, T., Carpenter, M. A., Geiger, C. A. & Koziol, A. M. Local structural heterogeneity in garnet solid solutions. Physics and Chemistry of Minerals 26, 554-569 (1999).